...the steward of the Malaysian palm oil industry
Foreword

The Malaysian Palm Oil Board (MPOB) has played an active role in developing new technologies which have contributed to the advancement of the Malaysian oil palm industry.

In leading the industry, MPOB provides and promotes strong scientific and technological support through its commitment to R&D, the commercialisation of its research findings and the transfer of knowledge and innovation. It also plays a significant role in matters relating to registration, licensing and enforcement.

MPOB has continued to provide leadership and has developed strong research expertise in various areas. A remarkable count of more than 340 technologies including new products and services have been launched for commercialisation and adoption by the industry. This has contributed towards accelerating the development of the industry and provided opportunities for investments in oil palm-related business.

MPOB will continue to contribute to the industry’s well-being and future growth. It is MPOB’s vision to strive for quality R & D outputs and to become Malaysia’s first R & D institution to produce a Nobel Laureate.

Corporate Profile

Premier Government Agency

MPOB is the premier government agency entrusted to serve the country’s oil palm industry. Its main role is to promote and develop national objectives, policies and priorities for the well-being of the Malaysian oil palm industry.

It was incorporated by an Act of Parliament (Act 582) and established on 1 May 2000, taking over, through a merger, the functions of the Palm Oil Research Institute of Malaysia (PORIM) and the Palm Oil Registration and Licensing Authority (PORLA). Each of these respective organisations has been involved in the oil palm industry for more than 20 years and it is to render more effective services as well as to give greater national and international focus to the industry that MPOB was instituted.

Funding

MPOB derives its funding mainly from cess imposed on the industry for every tonne of palm oil and palm kernel oil produced. In addition, MPOB receives budget allocations from the government to fund development projects and for approved research projects under the Intensification of Research in Priority Areas (IRPA) programme.
Vision
To become the premier Nobel Laureate-producing research and development institution, providing leadership and impetus for the development of a highly diversified, value-added, globally competitive and sustainable oil palm industry.

Mission
To enhance the well-being of the Malaysian oil palm industry through research, development and excellent services.

Strategies
- Expand and improve the current uses of oil palm products.
- Find new uses for the products.
- Improve production efficiency and quality of products.
- Optimise land utilisation in oil palm areas.
- Promote the use, consumption and marketability of oil palm.
Policy

- To adopt strong market and industry-oriented research and development programmes.
- To aggressively undertake transfer of technologies and commercialisation of research results.
- To forge an active partnership in technology development and utilisation with the private and public sectors.
- To strengthen international linkages and research collaboration in selected areas.
- To promote global awareness, appreciation and demand for Malaysian oil palm and products.

Functions

- Implement policies and development programmes to ensure the viability of the oil palm industry of Malaysia.
- Conduct and promote research and development activities relating to the oil palm industry.
- Regulate, register, co-ordinate and promote all activities relating to the oil palm industry.
- Develop, promote and commercialise research findings as well as provide technical, advisory and consultancy services to the oil palm industry.
- Develop and maintain markets for oil palm products as well as promote efficient marketing.
- Liaise and co-ordinate with other organisations inside or outside Malaysia to further enhance the oil palm industry of Malaysia.
- Plan and implement training programmes and human resource development in line with the needs of the oil palm industry.
- Be the resource and information centre of the oil palm industry including the publication and dissemination of information on oil palm as well as other oils and fats.
MPOB Board members lead the organisation to be the leader in the Malaysian oil palm industry

The Board Members

Members of the Board which comprises a Chairman, representatives from the government and the industry, and the Director-General of MPOB are appointed by the Minister of Plantation Industries and Commodities. The Board plays a leadership role in giving direction to the organisation.

Several committees serve the Board in the following areas:

- Research (Programme Advisory)
- Finance & Development
- Tenders
- Establishment
- Registration & Licensing
- Audit
The Programme Advisory Committee

The Programme Advisory Committee comprising eminent scientists and experts from Malaysia and abroad annually examines and makes recommendations on research activities for the Board’s consideration.

Organisation

The Director-General is responsible for the administration and management of MPOB. In executing his duties, the Director-General is supported by the Deputy Director-General (Research & Development) and the Deputy Director-General (Services).

Eight directors head the following divisions:

1. Biological Research
2. Engineering & Processing Research
3. Advanced Oleochemical Technology
4. Product Development Research & Advisory Services
5. Economics & Industry Development
6. Finance, Management & Development
7. Information Technology & Corporate Services
8. Licensing & Enforcement

Organisation Chart

- **Minister of Plantation Industries and Commodities**
 - **Chairman / Board**
 - **Director-General**
 - **Deputy Director-General (Research & Development)**
 - **Deputy Director-General (Services)**
 - **Finance, Management & Development Division**
 - Development & Maintenance
 - Finance & Procurement
 - Human Resource Management
 - Human Development & Conference Management
 - **Economics & Industry Development Division**
 - Techno Economics
 - Trade Development
 - Industry Development
 - **Advanced Oleochemical Technology Research Division (AOTD)**
 - Oleochemical Products Development
 - Oleochemical Products Services
 - Oleochemical Methods Services
 - Oleochemical Start-up Business Unit
 - **Engineering & Processing Research Division**
 - Milling & Processing
 - Agro Product
 - Energy & Environment
 - **Product Development Research & Advisory Services Division**
 - Analytical & Quality Development
 - Food Technology & Nutrition
 - Technical Advisory Services

The placement of the divisions in the Organisation Chart does not reflect their order of importance.
Research and Development (R&D)

Operations

Pilot plant producing polyol for polyurethane products

Research and Development is the thrust of MPOB’s activities. A whole spectrum of R&D work ranging from upstream production to downstream processing is carried out by the various research divisions namely Biological, Engineering & Processing, Product Development & Advisory Services and Advanced Oleochemical Technology.

Strategy

The research activities are aimed at maximising productivity, improving production efficiency and quality, and increasing value creation by expanding the palm oil and palm kernel oil value chain to promote a globally competitive and sustainable industry.

To achieve this, MPOB has embarked on a three-pronged R&D strategy:

- **High Income**
 - Increasing the yield of oil palm through the application of modern technologies such as genetic engineering and tissue culture as well as implementing good plantation management practices, farm mechanisation and integrated farming to increase the income of oil palm producers.

- **Zero Waste**
 - Optimising the utilisation of oil palm waste and biomass such as empty fruit bunches, fronds and trunks for field-mulching and commercial products like pulp and paper, medium density fibre-board, automobile components and biogas for energy generation.

- **Value-Addition**

 The Genome Analysis Laboratory for Oil Palm (GALOP) acts as the core facility providing services and gene resource management for MPOB.

Sample of MDF undergoes strength test

Farm mechanisation and integrated farming help to increase income of oil palm producers

From waste to wealth – utilisation of oil palm biomass is essential in sustainable agriculture
• Value-Addition
Increasing the value of palm-based products, both edibles and non-edibles, for consumer and industrial uses by going downstream.

- Biological Research Division
 This division undertakes all aspects of research relating to crop production and management, and advanced biotechnology.

 The R&D areas are:
 • Agronomy and fertilisers
 • Entomology and mammalia
 • Plant pathology and weed science
 • Plant physiology
 • Farm mechanisation
 • Gene expression
 • Metabolics
 • Genomics
 • Transformation
 • Breeding and genetics
 • Tissue culture
 • Crops and livestock integration
 • Extension, consultancy and training
 • Smallholders’ development

 The following four divisions are responsible for R&D:

 - Production of callus of palm’s shoot
 - Oil palm tissue culture
 - Vitamin E
 - Palm-based personal care products
Advanced Oleochemical Technology Research Division (AOTD)
This is a division that focuses on research in oleochemicals. Its objective is to spearhead the development of oleochemical downstream activities, thus increasing the country's earnings through oleochemical products.

The R&D areas are:
- Cosmetics, personal care and pharmaceutical products
- Surfactants and specialty chemicals
- Polyols, polyurethanes, polymers and coatings
- Household and industrial chemicals
- Agrochemicals
- Oleochemical methods and standards
- Oleochemical Process Development

AOTD has established analytical, efficacy and physical testing services for the benefit of the industry.

Advanced Oleochemical Technology Research Division (AOTD)
This is a division that focuses on research in oleochemicals. Its objective is to spearhead the development of oleochemical downstream activities, thus increasing the country's earnings through oleochemical products.

The R&D areas are:
- Cosmetics, personal care and pharmaceutical products
- Surfactants and specialty chemicals
- Polyols, polyurethanes, polymers and coatings
- Household and industrial chemicals
- Agrochemicals
- Oleochemical methods and standards
- Oleochemical Process Development

AOTD has established analytical, efficacy and physical testing services for the benefit of the industry.

Engineering and Processing Research Division
The thrust of this division is on enhancing the quality of oil palm products, expanding their uses, developing new milling and refinery processes as well as technology for increased efficiency and cleaner environment.

Continuous Sterilisation - a modern milling technology
Effluent Treatment System - an effective method in treating discharge from mills
Plant-wide automation to facilitate control of mill operation from a control room
Palm Oil Milling Technology Centre (POMTEC) in Labu, Negeri Sembilan
Palm-based polyurethanes
Palm-based oleochemical products - towards a cleaner environment
It undertakes economic research and statistical analyses on production, marketing and new technologies in the oil palm industry; embarks on economic development programmes and the registration, collection and dissemination of market and industry information.

Its main activities relate to:

- Market Development
- Techno Economics
- Econometrics
- Industry Development
- Trade Development

The R&D areas are:

- Product formulation and performance evaluations of palm-based solid fats and frying oils
- Fractal and synchrotron radiation studies of crystallisation of oil palm products
- Production of oil palm reference standards
- Development of new analytical techniques and instruments
- Environmental impact of agrochemical practices
- Research into health benefits of oil palm and oil palm-based products
- Development of palm-based nutracueticals
- Market expansion through Technical Advisory Services
The Finance, Management and Development Division, the Information Technology and Corporate Services Division and the Licensing and Enforcement Division provide support services designed to enhance the effectiveness of R&D and the growth of the palm oil industry.

Finance, Management and Development Division
The division oversees the management of the organisation and its finances, and provides services in matters relating to:
- Human Resources
- Finance and Procurement
- Development and Maintenance
- Human Resource Development and Conference Management

Information Technology and Corporate Services Division
The division provides expertise in the following areas:
- Palm Information Centre and Library
- Corporate Implementation and Consultancy
- Computer and Multimedia
- Public Relations and Publications

Licensing and Enforcement Division
The division is responsible for registering, coordinating, regulating and promoting all relevant activities for the healthy and orderly growth of the industry, and for ensuring that oil palm products produced and exported meet the trading contractual specifications and customer needs.

The division’s four main activities are:
- Licensing
- Enforcement
- Quality Control
- Legislation and Policy Studies

In rendering its services the division is assisted by regional offices.

Services

State-of-the art and interactive Palm Information Centre

Technical Consultancy

MPOB extends technical consultancy and other services to support the oil palm industry through its:
- Pilot Plant Facilities
- Efficacy Testings
- Microbiology Testings
- Analytical Testings
- Biodegradation Testings
- Ecotoxicity Testings
- Efficacy Testings
- Microbiological Testings
- Physical Testings
- Information & Library Services
- Market Information
- Technical Advisory Services
- Technical Consultancy
- Feasibility Studies on Oil Palm Planting
- Scientific Publications
- Technical Trainings
- Conferences & Seminars
- Transfer of Technology
- Extension Services
Achievements

The Malaysian Palm Oil Board has developed strong research expertise in various disciplines such as biology, chemistry, physics, engineering and other areas in carrying out R & D relating to the oil palm industry. Among its many successes include the utilisation of oil palm and oleochemicals in non-food applications and the development of oil palm biomass as a raw material for pulp, paper and furniture products such as the medium-density fibreboards and energy sector – biofuel.

MPOB has won many awards for its achievements in developing the Malaysian oil palm industry. Among the prestigious awards are the top-ranking Prime Minister’s Quality Award and scientific excellence awards for outstanding research projects, at both the national and international levels. The Islamic Development Bank (IDB) has awarded the prestigious - Prize for Science & Technology award in the category for “Institutions Having Achieved Outstanding Scientific or Technological Contribution to the Development of a Member Country”.

Upstream Research

MPOB has successfully assembled the world’s largest collection of oil palm germplasm, which has contributed tremendously to the development of planting materials. The range of high quality oil palm planting materials, PS1 and PS2, besides high yield, is known for dwarfishness and high iodine value, respectively. Breeding populations developed are PS3 (high kernel content), PS4 (high carotene), PS5 (thin shell), PS6 (large fruit), PS7 (high bunch index), PS8 (high vitamin E), PS9 (bactris), PS10 (long stalk), PS11 (high carotene E.guineensis) and PS12 (high oleic acid). The planting materials and breeding populations developed are for the betterment of the oil palm industry.

Gene sequences are archived in the Palm Genes database and are used to build the oil palm DNA chips for the development of diagnostic tools for breeding and tissue culture.
In Agronomy research, MPOB has developed an expert system known as the Oil Palm Efficient Nutrient System (OPENS) to increase site yield potential. This system determines the status of nutrients in the oil palm environment so that suitable fertilisers can be applied to plantations in appropriate dosages. OPENS, which considers soil characteristics, rainfall, age-profiles, soil and foliar data, can significantly increase productivity in the plantations. Tools such as Remote Sensing and Geographical Information System (GIS) can enhance precision agriculture and plantation management.

The fertilisers, namely MPOB F1 and MPOB F2, have balanced nutrients that optimise nutrient uptake, and deliver more yield. Their continuous application provides good growth and higher yields in the long term.

MPOB has also embarked on several farm mechanisation programmes to promote efficiency in the industry, address labour shortage, increase worker’s productivity and reduce plantation management costs. New technologies have been introduced and these include the hand-held mechanical cutter, harvesting machine for tall palms and a cable-way system for evacuation of fresh fruit bunches in peat and hilly areas.

In the field of genomics, MPOB has constructed genetic linkage maps of the oil palm genes associated with economics traits. The genomic in-situ hybridisation (GISH) technique, or chromosome painting, has been applied for distinguishing E. oleifera and E. guineensis chromosomes in hybrids and their backcross progenies. The application of automated DNA sequencing and bioinformatics tools has resulted in over 9,000 oil palm genes being partially sequenced. The gene sequences are archived in the Palm Genes database and are being used to build an oil palm DNA chip, or micro-array, for the development of diagnostic tools for breeding and tissue culture.

The Genome Analysis Laboratory for Oil Palm (GALOP) acts as the core facility providing services and gene resource management for MPOB, the industry and the scientific community. Research in tissue culture and the development of alternative methods of cloning have been aggressively undertaken.

In the industry, address labour shortage, increase worker’s productivity and reduce plantation management costs. New technologies have been introduced and these include the hand-held mechanical cutter, harvesting machine for tall palms and a cable-way system for evacuation of fresh fruit bunches in peat and hilly areas.
MPOB has succeeded in transforming the oil palm milling technology with its continuous sterilisation process. This new process eliminates the use of steriliser cages, rail tracks, overhead cranes, tippers, transfer carriages and tractors. In the conventional batch sterilisation process, bunches are loaded into cages and pushed into sterilisers where they are steamed in batches, for more than one hour. Considerable space and a system of rails are required in this method, which is also labour-intensive. The cost of building a new mill based on continuous sterilisation is estimated to be about 15 per cent less than a mill based on the conventional process. At the same time, MPOB is pioneering the use of a plant-wide control system to facilitate comprehensive monitoring of the milling process and equipment from a control room.

In Entomology and Mammalia research, the beneficial plant Cassia cobanensis is proven effective in propagating parasitoids and predators for the control of bagworms. A local Bacillus thuringiensis (Bt) isolate has potential to control bagworms and nettle caterpillars. Bio-agents such as the Metarhizium and Oryctes virus have the potential to control the rhinoceros beetle, Oryctes rhinoceros and reduce damage, especially in zero-burn replanting areas.

Plant Pathology research is focused on developing control methods and seeking early detection of Basal Stem Rot (BSR), the oil palm disease caused by Ganoderma. The molecular method can now be used to detect pathogenic Ganoderma species. To prolong the lifespan of diseased palms, hexaconazole can be applied with a pressure injection apparatus. A mechanical trunk injector has also been developed which will hasten the field application of the fungicide. Sanitation is considered extremely important in avoiding field occurrence of this disease. Apart from chemical and cultural practices, other microbes or antagonists which could reduce the infection or spread of Ganoderma are being studied.

Research in Crop Physiology is geared towards understanding the above-ground and below-ground resource capture, storage and utilisation, the regulatory processes involved in the reproductive phase (e.g. sex determination, abortion and fruit bunch development) and the physiological responses to environment stress, diseases and agronomic practices. Research tools such as minirhizotron and root auger were developed to further enhance the observation and study of the oil palm root development and turnover.

MPOB has introduced various formulations for food. Oil palm is so adaptable that it can be used for a wide range of food products. These include margarines, shortenings, fat spreads, ice-cream, cheese, non-dairy creamer and other non-dairy products, salad dressing, chocolates and palm-based coconut-milk (santan) and others.
The versatility of palm oil is not limited to food applications. Its attractiveness as raw material for non-food application is well-known. Industries prefer to use plant-derived raw materials since these are renewable, environmental-friendly and is cost competitive.

In non-food applications, research has focused on the development of value-added oleochemical consumer products such as soaps, shower products, shampoos, conditioners, grease, detergents and softeners as well as agricultural and industrial products.

MPOB has introduced a technology to produce surfactant from palm oil that can compete with other petrochemical-derived surfactants, in terms of costs and performance. Palm-based surfactants have proven to clean as effectively as other surfactants. It is biodegradable, mild towards enzymes and less sensitive to water hardness. It can also easily be formulated into powder and liquid detergents. MPOB estimates the potential demand for palm-based surfactants to be high.

The versatility of palm oil enables it being used in a wide range of food products.
About 10 per cent of the output of the oil palm tree is palm oil while about 90 per cent, in the form of trunk and fibre, are biomass (waste) which has yet to be economically exploited fully. The utilisation of the oil palm biomass is essential in sustainable agriculture.

MPOB, through its research, has made it possible for this biomass to be converted into a wide range of industrial applications and has proven that the conversion of oil palm biomass into certain higher-value products is technically feasible. The fronds, trunks and empty fruit bunches have been turned into plywood, pulp and paper products, medium-density fibreboard, moulded particleboard and thermoplastic composites. Others include composite boards of various kinds used for making furniture and automotive components. The oil palm biomass is also being used in the feedstock and chemical industry for fertiliser and animal feed production.

Commercialisation

The new technologies and products emanating from MPOB research and development programmes are actively promoted for adoption and many have been transferred for commercialisation by the industry and Malaysian entrepreneurs.

MPOB’s commercialisation efforts owe their success to effective transfer of technology methods which are implemented through seminars and exhibitions, technology demonstration month, technology website, pilot plants and incubation centres, the MPOB intellectual property policy and commercialisation agreements.

The transferred technologies have contributed significantly to the oil palm industry. The findings generated from transfer of technology efforts are multifarious, and may be classified into the following categories:

- **Planting Materials and Breeding Populations**
 - PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11 and PS12.

- **Farm Mechanisation**

- **Crop and Livestock Integration**
 - MPOB’s mixed farming design with distinct features. In a defined, systematic way, two commodities, cattle and oil palm, are managed in a single piece of land.

- **Pests and Disease Control**
 - The biological technique developed to control rhinoceros beetle. *Metarhizium anisopliae*, a fungus which kills the rhinoceros beetles that damage the oil palm tree at the immature stage.
• Milling and Processing

• Food Use
 – Red Palm Oil, Vitamin E, Palm Oil-Based Specialty Animal Fats Replacer (SAFaR™) Formulation, Pourable Margarine and Smart Balance™ range of products.

• Oleochemical
 – Detergents, cosmetics, personal care products, polyols and polyurethanes, coatings and adhesives, agricultural products and industrial products.

• Biomass Utilisation
 – Pulp & paper and fibremat from oil palm fibres, OP-Fibre Moulded Plastic Composite and Automobile Components

MPOB has released more than 340 technologies and many of these have been commercialised. Several more of these technologies, which are to be commercialised through the licensing of patents, are currently under negotiations.
The MPOB head office is located in Bangi, Selangor. It encompasses its research facilities which include the Oil and Fats Technology Centre (OFTEC), Advanced Biotechnology and Breeding Centre (ABBC), Palm Biodiesel Pilot Plant, Margarine Pilot Plant, Continuous Frying Pilot Plant, High Oleic Pilot Plant, Alpha SME Pilot Plant and Microbial Technology Engineering Centre (MICROTEC). It also houses the Palm Information Centre and Library.

Facilities

The Advanced Oleochemical Technology Division (AOTD), located in Bandar Baru Bangi, Selangor, is well-equipped with state-of-the-art R&D facilities enabling it to provide specialised services to the industry. Two other facilities located a distance away are the Farm Mechanisation Centre and the Biomass Technology Centre. The Wisma Sawit in Kelana Jaya, Selangor, accommodates the Economics and Industry Development Division as well as the Licensing and Enforcement Division.

MPOB has set up a fully-automated modern mill at the Palm Oil Milling Technology Centre (POMTEC) in Labu, Negeri Sembilan. The installation encompasses up-to-date milling technologies which include a plant-wide control system and continuous sterilisation. With this modern mill, the oil palm industry will have access to technology-transfer in commercial mills which would lead to increased productivity, better quality oil palm and reduced processing costs.

MPOB and FELDA Agricultural Services Sdn Bhd (FASSB), a subsidiary of FELDA, have set up the Metarhizium Technology Centre (METEC) in Jerantut, Pahang. The launching of METEC is a landmark event in the development of collaborative efforts between MPOB and FELDA in promoting the effective application of R&D. The introduction of bio-agents such as the Metarhizium fungus will benefit the plantation industry and assure high returns.

The Energy and Protein Centre (EPC) is located in Keratong, Pahang. The centre is entrusted to find technical solutions, formulation and feasible practices for utilising and incorporating more total palm fat energy in commercial livestock feed.

A network of research stations, regional and sub-regional licensing and enforcement offices, as well as port stations have been established throughout the country to ensure the orderly development and growth of the industry.
MPOB has also set up technical advisory offices at various major oil palm consuming countries.

At home, a network of 6 regional and 10 subregional offices, 7 research stations and 5 port stations has been established.

It also maintains linkage with international institutions related to oils and fats, universities and various R&D institutes. This is done through collaborative or contract research in areas of common interest. Such linkages help MPOB keep abreast with the latest developments in the oils and fats sector.
... a total of more than 340 technologies/products have been launched.
<table>
<thead>
<tr>
<th>Technology / Product</th>
<th>Researched By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sequencing Batch Reactor</td>
<td>Ir. Dr. Ma Ah Ngan</td>
</tr>
<tr>
<td>2. Harvesting Pole (Zirafah)</td>
<td>Abdul Razak Jelani</td>
</tr>
<tr>
<td>3. Mechanical Loader (The Grabber)</td>
<td>Dr. Hj. Ahmad Hitam</td>
</tr>
<tr>
<td>4. Palm-Based Printing Ink</td>
<td>Dr. Ooi Tian Yue</td>
</tr>
<tr>
<td>5. Leasing of Durian Mother Palms for Seed Production</td>
<td>Dr. N. Rajanaidu</td>
</tr>
<tr>
<td>6. Sale of Pollen for Seed Production</td>
<td>Dr. N. Rajanaidu</td>
</tr>
<tr>
<td>7. Palm Particle Board Furniture</td>
<td>Kamarudin Hassan</td>
</tr>
<tr>
<td>8. Extraction of Vitamin E</td>
<td>Abd. Gaper Mat Top</td>
</tr>
<tr>
<td>9. Palm-Based Candles</td>
<td>Dr. Ooi Tian Yue</td>
</tr>
<tr>
<td>10. Palmosil (Palm Oil Information Online Service)</td>
<td>Dr. Choo Teck May</td>
</tr>
<tr>
<td>11. Red Palm Oil</td>
<td>Dr. Choo Teck May</td>
</tr>
<tr>
<td>12. Production Technology for Methyl Ester</td>
<td>Dr. Ooi Cheng Kiat</td>
</tr>
<tr>
<td>13. Production Technology for Carotenoids</td>
<td>Dr. Choo Teck May</td>
</tr>
<tr>
<td>14. Production Technology for Monoglycerides</td>
<td>Dr. Ahmad Kassimir Din</td>
</tr>
<tr>
<td>15. PORIM Series No.1-Planting Material</td>
<td>Dr. Hj. Ahmad Hitam</td>
</tr>
<tr>
<td>16. PORIM Series No.2-Planting Materials</td>
<td>Dr. Hj. Ahmad Hitam</td>
</tr>
<tr>
<td>17. Super Crawler</td>
<td>It. Abd. Rahim Shuib</td>
</tr>
<tr>
<td>18. Automatic Grabber</td>
<td>Dr. N. Rajanaidu</td>
</tr>
<tr>
<td>19. Loose Fruit Collector</td>
<td>Kamarudin Hassan</td>
</tr>
<tr>
<td>20. Walkfoot</td>
<td>Dr. Hj. Mohd Siti Soffi</td>
</tr>
<tr>
<td>21. PORIM Elite Pollen</td>
<td>Wan Rosnani Awang Ida</td>
</tr>
<tr>
<td>22. Planting Medium from Oil Palm Biomass</td>
<td>Dr. Nor Aini Idri</td>
</tr>
<tr>
<td>23. Red Palm Oil(Olein) by Modified Chemical Refining</td>
<td>Noor Lida Habi Mat Dian</td>
</tr>
<tr>
<td>24. Production of Palm-Based Ice-Cream</td>
<td>Dr. Hj. Annie Kuntorn</td>
</tr>
<tr>
<td>25. Palm Oil-Based Shortenings</td>
<td>Dr. Hj. Annie Kuntorn</td>
</tr>
<tr>
<td>26. Palm Olein Salad Dressings</td>
<td>Dr. Hj. Annie Kuntorn</td>
</tr>
<tr>
<td>27. Micronencapsulated Palm Oil-Based Products</td>
<td>Noor Lida Habi Mat Dian</td>
</tr>
<tr>
<td>28. Palm-Based Glycerine Soap</td>
<td>Dr. Hj. Annie Kuntorn</td>
</tr>
<tr>
<td>29. Evaporation Technology for Palm Oil Mill Effluent Treatment</td>
<td>Ropandi Mamat</td>
</tr>
<tr>
<td>30. Activated Carbon Production from Oil Palm Wastes</td>
<td>Dr. Choo Yeen Moy</td>
</tr>
<tr>
<td>31. Palm-Based Lubricant (for motorcycle)</td>
<td>Kunit Yasah</td>
</tr>
<tr>
<td>32. Production of Phylin, Phytic Acid and Myo-inositol from Palm Kernel Cake</td>
<td>Rubash Musri</td>
</tr>
<tr>
<td>33. Palm-Based Processed Cheese</td>
<td>Dr. Kantina Ahmad</td>
</tr>
<tr>
<td>34. Palm-Based Chocolate Paste</td>
<td>Sabariah Samsudin</td>
</tr>
<tr>
<td>35. Palm-Based Ice Cream Powder</td>
<td>Wan Rosnani Awang Ida</td>
</tr>
<tr>
<td>36. Ice Cream Powder</td>
<td>Dr. Hj. Mohd Siti Soffi</td>
</tr>
<tr>
<td>37. Trans Free Margarine</td>
<td>Abdul Rashid Abd. Shaker</td>
</tr>
<tr>
<td>38. Palm-Based Paper Coating</td>
<td>Dr. Ooi Tian Lee</td>
</tr>
<tr>
<td>39. Palm-Based Products in Drinking of Waste Papers</td>
<td>Dr. Cheah Soo Choo</td>
</tr>
<tr>
<td>40. Quality Control Process for Oil Palm Tissue Culture Using DNA Probes</td>
<td>Dr. N. Rajanaidu</td>
</tr>
<tr>
<td>41. PORIM Elite Series 3-Planting Materials</td>
<td>Dr. Choo Yeen May</td>
</tr>
<tr>
<td>42. Elans olfera Palm for the Pharmaceutical Industry</td>
<td>Ir. Mohamad Solong</td>
</tr>
<tr>
<td>43. Crude Palm Oil Clarification by Membrane Filter Press</td>
<td>Noor Lida Habi Mat Dian</td>
</tr>
<tr>
<td>44. Palm Oil-Based Reduced Fat Spread</td>
<td>Dr. Zaida Zamul</td>
</tr>
<tr>
<td>45. Palm Oil-Based Santan Powder</td>
<td>Dr. Nor Aini Idri</td>
</tr>
<tr>
<td>46. Palm Oil-Based Vanaspati</td>
<td>Kamarudin Hassan</td>
</tr>
<tr>
<td>47. Pulp and Paper from Oil Palm Fibres</td>
<td>Dr. Hj. Salmish Ahmad</td>
</tr>
<tr>
<td>48. Palm Oil-Based Anionic Surfactants</td>
<td>Dr. Maria Madon</td>
</tr>
<tr>
<td>49. Chromosome Painting in Oil Palm Hybrids</td>
<td>Mokandar Mat Sahri</td>
</tr>
<tr>
<td>50. Palm Oil Porable Margarine</td>
<td>Dr. Tan Yew Ai</td>
</tr>
<tr>
<td>51. The Laser Spectrophotometer</td>
<td>Dr. Hj. Annie Kuntorn</td>
</tr>
<tr>
<td>52. Transparency Meter</td>
<td>Dr. Siew Wai Lun</td>
</tr>
<tr>
<td>53. Slip Melting Point Meter</td>
<td>Dr. Hj. Mohd Siti Soffi</td>
</tr>
<tr>
<td>54. Non-Dairy Ice Cream</td>
<td>Dr. K. Sundram</td>
</tr>
<tr>
<td>55. Smart Balance</td>
<td>Hj. Ahmad Tarmizi Mohamed</td>
</tr>
<tr>
<td>56. Application of Oil Palm Efficient Nutrient System</td>
<td>Ahmad Zaini Yusof</td>
</tr>
</tbody>
</table>
b) The Identity of Ganoderma Species Responsible for Basal Stem Rot Disease of Oil Palm in Malaysia - Pathogenicity Test

Wakfoot 2: (FFB In-Field Transporter)

Palm-Based Eye Contour Gel

Palm-Based Whitening Gel

Palm-Based Cleansing Milk

Palm-Based Day Cream with Sunscreen

Palm-Based Night Cream

Palm-Based with Tawas

Palm Soap with Stabbing Agent

Hi Reach Harvesting Pole

Goats Milk Ice Cream

Recovery of Glycerol and Valuable Components from Glycerol Residue

Recovery of Glycerol and Valuable Components from Glycerol Pitch

Palm-Based Insecticide Formulation

Speciality Animal Fats Replacer For Meat Products

Palm-Based Esterquats

Palm-Based Tempura Oil

30 Tonnes FFB Technology for Oil Palm Growers - A Case Study on Coastal Area

Field Practices for Reducing Risk of Rhinoceros Beetles (Oryctes Rhinoceros)

Systematic Integration of Cattle in Oil Palm

Novel Process for the Production of Water-soluble Antioxidants with Potential Nutraceutical Application From POME

Efficacy Tests of Bacillus thuringiensis Products for Strategic Biocontrol Metis plana

Double-Layer Technique in Rooting of Oil Palm in vitro Plantlets

...the steward of the Malaysian palm oil industry
100. Polution 12 : Pollen for the development of Dwarf PS1 - type Palm Planting Materials
101. An Innovative Technique on Management of Biomass during Oil Palm Replanting
102. Sap Harvesting during Replanting
103. MPOB’s differential GPS Base Station for Oil Palm Industry
104. Optical Mark Reader : An option in Data Entry in Oil Palm Breeding
105. Fertilizer Reduction Package
106. Powder Formulation of Metharizium anisopliae for Control of Oryctes rhinoceros
107. Motorcycle Cart for Smallholders
108. Motorised Wheelbarrow for in-field FFB Evacuation
109. Sprayer for Young Palm
110. Block Board from Oil Palm Trunk
111. Fully Stripped Bunches in Palm Oil Mill
112. Palm-Based Soap with Reishi Mushroom (Ganoderma)
113. Namari Olive Oil Soap
114. Palm-Based Cleansing Gel
115. Skin Lightening Day Cream
116. Skin Lightening Night Cream
117. Palm-Based Facial Cleanser
118. Palm-Based Facial Toner
119. Palm-Based Whitening Cream
120. Palm-Based Sunblock Cream
121. Palm-Based Lipsticks
122. Sprayable Cooking Oil
123. Mengkudu Spread
124. Protein Fortified Trans-Free Margarine

125. Red Palm Oil-Based Ice Cream
126. Palm-Based Shortening Formulations for Turkey
127. Integration of Deer in Oil Palm Estate
128. Precision Agriculture - Fertilizer Management Map
129. High Oil Palm Density On Fert
130. Indirect Method for Measuring Oil Palm Leaf Area Index
131. Control of Ganoderma Infected Palm - Development of Pressure Injection and Field Applications
132. Cassia cobanensis as Beneficial Plant for Bagworm Control
133. Bacillus thuringiensis, MPOB SRBT1 for Controlling Metisa plana
134. Parator VI.0 - A Diagnostic Tool for the Identification of Parasitoids and Predators for Bagworm and Nettle Caterpillars in Oil Palm
135. Mechanical Fertilizer Spreader for Young Palms
136. Half-Track Machine for in-Field FFB Collection
137. Oil Palm Liquid Culture-MPOB Protocol
138. Flameless Sterilizer
139. Optical Mark Reader : An option in Data Entry in Oil Palm Breeding
140. LPD2 - A Diagnostic Tool for the Identification of Parasitoids and Predators for Bagworm and Nettle Caterpillars in Oil Palm
141. Mechanical Fertilizer Spreader for Young Palms
142. Halt-Track Machine for In-Field FFB Collection
143. PS8-High Carotene E. oleifera Planting Materials
144. Oil Palm Liquid Culture-MPOB Protocol
145. Flameless Sterilizer
146. Genome Analysis Laboratory for Oil Palm (GALOP)
147. Technology for Screening and Selection for Low Lipase Oil Palm Varieties
148. Licensing of a Moscrop-Specific Promoter
149. Palm-Based Methyl Ester Sulphonates
150. Bio-Degradation Testing Services
151. Eco-Toxicity Testing Services
152. Palm Diesel with Low Pour for Cold Climate Countries
153. Trash Removal From Mass Passing Through Digester
154. Continuous Sterilization of Fresh Fruit Bunches
155. Production of C16 and C18 Mixed Palm Oil Methyl Ester
51

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros

Oryctes virus for Biocontrol of Rhinoceros Beetles, Oryctes rhinoceros
202. J Pearl Moisturising Facial Cream
203. J Pearl Liquid Foundation
204. J Pearl Lipstick
205. J Pearl Lip Gloss
206. Oil Palm Plywood
207. NoSkin Moulded Particleboard from Oil Palm Biomass
208. Oil Palm Flat Particleboard
209. Extraction of Oil Palm Heart
210. Trap for Auto-Dissemination of *Metarhizium* for the Control of *Oryctes rhinocerous*
211. *Oryctes Supplemented Pellets as Ornamental Fish Feed*
212. Root Auger for Peat Area
213. Innovative Technique of Sanitation for Controlling *Ganoderma* at Replanting
214. Prolonging the Productive Life of *Ganoderma*-Infected Palms with Hexaconazole
215. Mechanical Trunk Injection for Control of *Ganoderma*
216. Variable-Rate Fertilizer Applicator for Oil Palm
217. Development of a Machine for harvesting Tall Palm
218. Cableway System for Oil Palm FFB Evacuation
219. Beta-Ketoacyl ACP Synthase II (KAS II)
220. Stearyl-ACP Desaturase Genes from Oil Palm
221. PST : High Bunch Index Breeding Populations
222. PSB : High Vitamin E Breeding Populations
223. Peach Palm (Bactris gasipaes) for Palm Heart Production
224. Integration of Banana (Rambutan variety) with Oil Palm Planted in Double Avenue Planting System
225. Integration of Dairy Goats with Oil Palm
226. Crude Palm Oil Clarification by Accelerated Oil and Solid Recovery Process (AOSR)

Rubaah Masri
Dr. Zahariah Ismail
Dr. Mohamad Husin
Wan Hasamudin Wan Hassan
Dr. Mohamad Husin
Dr. Anis Mokhtar
Ramke Mohsin
Dr. Norman Kamaradin
Dr. Mohd Hanif Hanan
Dr. Idris Abu Seman
Dr. Idris Abu Seman

Abd. Razak Jelani
Hj. Wahid Omar
Abd. Rahim Shabt
Mohd Solah Deraman
Dr. Umi Salamah Ramli
Dr. Siti Nor Akmar Abdullah
Dr. Ahmad Kusairi Din
Dr. Rajasri/Dr. Ahmad Kusairi Din
Hj. Suboh Ismail
Dr. Rosli Awaluddin
Ir. Mohamed Sulong

227. Production of Refined Xylose and Xylitol from Empty Fruit Bunch
228. Production of Carboxymethylcellulose (CMC) from Oil Palm Empty Fruit Bunch (EFB)
229. Gratification Technology Using Palm Oil Mill Biomass for Syngas Production and Renewable Energy
230. Regeneration of Spent Bleaching Earth
231. Palm-Based Industrial Solvent
232. Production of Co-Enzyme Q10 from Crude Palm Oil
233. Palm-Based General Cleansing Agent : Degreaser
234. a) Palm-Based Lotion type Waterless Hand Cleaner
b) Palm-Based Gel type Waterless Hand Cleaner
235. a)Palm-Based Baby Shampoo
b)Palm-Based Baby Lotion
236. Environment Friendly Palm-Based Insert Ingredients for EW-Insecticides Formulations
237. Nikik Stimulating Shampoo
238. Nikik Nourishing Conditioner
239. Nikik Silky Soft Hand Cream
240. Nikik Vitamin E Night Cream
241. Nikik Soothing and Smoothing Foot Cream
242. Nikik Revitalising Body Lotion
243. Nikik Sunscreen Lotion SPF 20+
244. Nikik UV Defence Face Cream
245. Nikik Anti-Fatigue Bath & Shower Gel
246. Nikik Vitraflense Foundation SPF 12
247. Palm Esters for Lubricant
248. Palm-Based Food-Grade Grease
249. Lip Gloss with Changeable Colours
250. Palm-Based Spray Oil

Ir. Mohamed Sulong
Rosnah Mat Som
Hj. Zulkifli Abd Rahman
Dr. Choo Kei Yen/Dr. Siew Wu Lin
Dr. Choo Yen May
Dr. Choo Yen May
Dr. Choo Yen May
Aishah Ahmad
Aishah Ahmad
Norashikin Ahmad
Norashikin Ahmad
Dr. Cheah Kian Yew/Dr. Siew Wu Lin
Dr. Abdul Razak Jelani
Hj. Wahid Omar
Abd. Rahim Shabt

Abd. Razak Jelani
Hj. Wahid Omar
Abd. Rahim Shabt
Mohd Solah Deraman
Dr. Umi Salamah Ramli
Dr. Siti Nor Akmar Abdullah
Dr. Ahmad Kusairi Din
Dr. Rajasri/Dr. Ahmad Kusairi Din
Hj. Suboh Ismail
Dr. Rosli Awaluddin
Ir. Mohamed Sulong

227. Production of Refined Xylose and Xylitol from Empty Fruit Bunch
228. Production of Carboxymethylcellulose (CMC) from Oil Palm Empty Fruit Bunch (EFB)
229. Gratification Technology Using Palm Oil Mill Biomass for Syngas Production and Renewable Energy
230. Regeneration of Spent Bleaching Earth
231. Palm-Based Industrial Solvent
232. Production of Co-Enzyme Q10 from Crude Palm Oil
233. Palm-Based General Cleansing Agent : Degreaser
234. a) Palm-Based Lotion type Waterless Hand Cleaner
b) Palm-Based Gel type Waterless Hand Cleaner
235. a)Palm-Based Baby Shampoo
b)Palm-Based Baby Lotion
236. Environment Friendly Palm-Based Insert Ingredients for EW-Insecticides Formulations

Ir. Mohamed Sulong
251. Trans-Free Based Chocolate Spread
252. Palm-Based Mozzarella Cheese as Pizza Topping
253. Deterioration of Bleachability Index
255. Satellite Mapping of Oil Palm Land Use
256. Reactive Phosphates Fertilizers Recommended for Young Oil Palm Planted in Inland Soils
257. Air Assisted Loose Fruit Separating Machines
258. Bacillus thuringiensis, Terakil-1 (WP) for Biological Control of Bagworms
259. Bacillus thuringiensis, Teracon-1 (TI) for Biological Control of Bagworms
260. Reducing Risk of Ganoderma in Supply Palms
261. MPOB Fast Transfer Technique (MoFaTT) in Liquid Culture System
262. Direct Data Capturing System for Bunch Analysis
263. Breeding Populations Selected for Long Stalk
264. Integration of Bactris (Bactris gasipaes) for Palm Heart with Oil Palm Planted in Double Avenue Planting System
265. Integration of Banana (Tanduk Variety) with Oil Palm Planted in Double Avenue Planting System
266. Palm-Based Anti-Acne Cream
267. Palm-Based Anti-Inflammatory Cream
268. Palm Kleen Liquid Dish Wash
269. Palm Kleen Gel Dish Wash
270. Palm Kleen Hand Wash
271. Palm-Based Anti-Wrinkle Lotion
272. Palm-Based Liquid Foundation SPF 13
273. Palm-Based Compact Powder with Vitamin E
274. Palm-Based Compact Paste with Vitamin E

Salmi Yati Shamsudin
Dr. Karimah Ahmad
Dr. Siew Wai Lin
Hassol Othman
Hj. Wahib Omar
Dr. Zin Zawani Zakaria
Ir. Abd. Rahim Shaib
Dr. Siti Ramiah Ahmad Ali
Dr. Siti Ramiah Ahmad Ali
Dr. Idris Abu Saman
Mohd. Isu Zainol Abidin
Hj. Suboh Ismail
Hj. Suboh Ismail
Zafarizal Aldrin Azizul Hassan
Zafarizal Aldrin Azizul Hassan
Dr. Zahariah Ismail
Hj. Ahmad Tarmim Hashim
Hj. Suboh Ismail

275. Palm-Based Colour Care Shampoo
276. Palm-Based Colour Care Conditioner
277. Palm-Based Polyol for Adhesives
278. Palm-Based Polyol for Coatings
279. Palm-Based Four Point Depressant for Fatty Alkyl Esters
280. Microwave Aided Rapid Production of Oleylamide
281. Palm-Based Hydraulic Fluid
282. Improved Technology for the Production of Palm-Based Dihydroxystearic Acid (DHSA)
283. Improved Technology for the Production of Palm-Based Powder Detergent
284. Improved Technology for the Production of Palm-Based Liquid Laundry Detergent
285. Plant-Wide Automation of Palm Oil Mills
286. Water Cooled Screw Press For Production of Feed Quality Palm Kernel Expeller (PKIE) for Feedstuff
287. Agrolumber : A Polymeric Composite Material from Oil Palm Fibres
288. Mass Coloured Medium Density Fibreboard from Admixture of Empty Fruit Bunches and Rubber Wood Fibre : Enhanced the Board Appearance
289. Disintegrable Plastics from Oil Palm and Its Products
290. Production of Palm-Based Tocotrienols-Enhanced Fraction (TEF)
291. Certified Reference Materials from Palm Oil Products
292. Determination of Glyphosate Residue in Oil Matrix Part I. Pre-Column Derivation and Gas Chromatographic Analysis
293. Determination of Paraquat in Edible Oil
294. Determination of Methamidophos in Oil Using Gel Permeation Clean-Up and Capillary Gas Chromatography
295. Determination of Monocrotophos in Palm Oil Using Gel Permeation Chromatography Clean-Up and Capillary Gas Chromatography

Norashikin Ahmad
Norashikin Ahmad
Dr. Hazimah Abu Hassan
Dr. Hazimah Abu Hassan
Dr. Ooi Tian Lye
Hoong Seng Szi
Dr. Yeong Shu Kit
Ir. Farhan bin Siew
Zulina Abd Maurad
Zulina Abd Maurad
Zulina Abd Maurad
Dr. Sivasothy Kandiah
Rokaya Mohd Halim
Kamaruddin Hassan
Ropandi Mamat
Wan Hasamuddin Wan Hassan
Abd. Gopor Ml. Top
Elina Hishamuddin
Dr. Ainee Kantom
Yeoh Chee Beng
Yeoh Chee Beng
Dr. Ainee Kantom
296. Determination of Acephate in Palm Oil Using Gel Permeation Chromatography
297. Determination of Deltamethrin in Edible Oil
298. Determination of Organochlorine Pesticide in Edible Oil (Using Sweep Co-Distillation Clean-Up Method)
299. Determination of Chlorpyrifos in Edible Oil (Liquid-Liquid Extraction Method)
300. Determination of Hydrocarbons (n-alkanes) in Oil Matrix
301. Determination of Benzo (a) Pyrene in Edible Oils and Fats by HPLC and Fluorescence Detection
302. MPOB-HiE as Alternative to Crude Palm Oil in Total Mixed Ration of Broiler Chicken
303. Two-in-One MPOB- Simple Impeller (2-in-1 Mo-SLIM) in Liquid Culture System
304. Simple Impeller with Fast Transfer Technique (SLIM-FaTT) in Liquid Culture System
305. Microsatellite Probes for Fingerprinting of Oil Palm Clones
306. Markers to Predict Skin Colour of Oil Palm Fruit
307. Fertilizer Management for Immature Oil Palm Planted on Inland Terraced Soil
308. Rubstake- Rubber Wood for Detecting Subterranean Termites on Peat Soil
309. Canopy Temperature Differences (CTD) for Detecting Stress in Oil Palm
310. Integration of Groundnut with Oil Palm Planted in Double Avenue Planting System
311. Integration of Pineapple (Sarawak Variety) with Oil Palm Planted in Double Avenue Planting System
312. PS 11- High Carotene E. guineensis Breeding Population
313. PS 12- Breeding Population for High Oleic Acid
314. Technique for Inoculation of Oil Palm Germinated Seeds with Ganoderma
315. Hovercraft for In-field Operation in Oil Palm Estates with Soft Ground
316. Compact Transporter for In-field Activities
317. Standard Reference Materials- Fatty Acid Composition of Palm Oil, Palm Olein and Palm Sterolin (MRM-2)
318. Palm-based Fudge Sauce as Dessert Topping
319. Palm-based Bakery Fats For Crumble Pastry
320. Palm-based Sweet Short Crust
321. Palm-based Fluid Shortening (MPOB-Shortening FL 30)
322. Palm Oil Based Shortening For Multi Layered Bread
323. Interesterified Palm Products as Hard Stock for Solid Fat Formulations
324. Palm Based Whipped Topping
325. Food Grade Palm-based Industrial Lubricant- Base Fluids
326. Food Grade Palm-based Industrial Lubricant- Spindle Oil
327. Food Grade Palm-based Industrial Lubricant- Hydraulic Oil
328. Food Grade Palm-based Industrial Lubricant- Circulating Oil
329. Palm-based Additive to Improve Lubricity of Ultra Low Sulphur Diesel
330. Production of Palm-Based Biomass Briquettes
331. Carbon Black from Oil Palm Empty Fruit Bunches
332. High Porosity Carbon Powder from Oil Palm Empty Fruit Bunches for Adsorbent Products
333. Carbon Glassy for Electrodes from Oil Palm Empty Fruit Bunches
334. Electrical Carbon Brushes from Oil Palm Empty Fruit Bunches
335. Mobile Filter Press for Effluent Pond Cleaning
336. Fibre Washing Using Dynamic Washer
337. Crude Palm Oil Clarification by Cyclo-Separator and Filter Press System
338. Solid Separation From Sludge Using Membrane Filter Press
Service Transferred

1. Anti-Acne Efficacy Testing Services
2. Determination of Parabens Preservatives in Cosmetic and Personal Care Products
3. Detection of Arsenic in Edible Oils
4. Physical Testing Service - DSC-TGA
5. Physical Testing Service - Rheology
6. Physical Testing Service - Particle Size Analysis
7. Physical Testing Service - Optical Microscope
8. Physical Testing Service - Surface and Interfacial Tension
9. Arabidopsis thaliana Laboratory as a Research Facility in MPOB
10. Construction of Transformation Vectors for Genetically Modifying Plants
11. Polymorphic Determination of Crystals Of Palm Oil and its Products Using TTRAX III Rotating Anode Diffractor Meter
12. Product Development and Crystallisation Simulation Using Mettler LabMax Reactor with FBRM System
13. Determination of Titanium (organic) in Fatty Acids
14. Determination of Alcohol Bottom and Ester Bottom in Crude Palm Kernel Oil
15. MicrobeLynx for Identification of Bacterial Species
16. Denaturing Gradient Gel Electrophoresis for Studying the Microbial Population
17. Batch and Continuous Frying Testing Services

Researched By
Zafarizal Aldrin Azizul Hassan
Suriati Hashim
Dr. Mohtar Yusof
Dr. Yeong Shoot Kian
Dr. Yeong Shoot Kian
Dr. Yeong Shoot Kian
Dr. Yeong Shoot Kian
Dr. Zahariah Ismail
Zubaidah Ramli
Abdul Masani Mat Yunus
Dr. Chong Chiew Let
Dr. Chong Chiew Let
Dr. Mohit Yaacof
Dr. Mohit Yaacof
Dr. Siti Ramlah Ahmad Ali
Dr. Karimah Ahmad

339. Palm Tocals (Tocopherols & Tocotrienols) as Standard Reference Materials (MRM-3)
340. Palm-based Cleaner for Automobiles - Tyre Cleaner and Shine
341. Palm-based Cleaner for Automobiles - Dashboard Cleaner and Shine
342. Palm-based Cleaner for Automobiles - Engine Degreaser
343. Palm-based Rigid Polyurethane Foams
344. Palm-based Polyurethane Flexible Slabstock Foams

Ng Mei Han
Dr. Yeong Shoot Kian
Dr. Yeong Shoot Kian
Dr. Yeong Shoot Kian
Tuanku Noor Muنزri Tuan Ismail
Dr. Ooi Tuan Lye